हिंदी

The Value of Cos 1° Cos 2° Cos 3° ..... Cos 180° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos 1° cos 2° cos 3° ..... cos 180° is 

विकल्प

  • 1

  • 0

  • −1

  •  None of these

MCQ

उत्तर

Here we have to find:  `cos 1° cos 2° cos 3°........... cos180°` 

`cos 1° cos 2° cos 3°................ cos180°` 

`= cos 1° cos 2° cos 3°............. cos 89° cos 90° cos 91° ............. os 180°`            ` [since cos 90°=0]` 

`= cos 1° cos 2° cos 3°............0xx cos 90° cos180°` 

`= cos 1° cos 2° cos 3°........0 xxcos 90°........... cos 180°` 

`= 0` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 20 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Evaluate `(tan 26^@)/(cot 64^@)`

 


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


Prove that:

sec (70° – θ) = cosec (20° + θ)


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


The value of tan 1° tan 2° tan 3°…. tan 89° is


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×