Advertisements
Advertisements
Question
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Options
1
0
−1
None of these
Solution
Here we have to find: `cos 1° cos 2° cos 3°........... cos180°`
`cos 1° cos 2° cos 3°................ cos180°`
`= cos 1° cos 2° cos 3°............. cos 89° cos 90° cos 91° ............. os 180°` ` [since cos 90°=0]`
`= cos 1° cos 2° cos 3°............0xx cos 90° cos180°`
`= cos 1° cos 2° cos 3°........0 xxcos 90°........... cos 180°`
`= 0`
APPEARS IN
RELATED QUESTIONS
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
solve.
cos240° + cos250°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find cosine of 2° 4’
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Solve: 2cos2θ + sin θ - 2 = 0.
`(sin 75^circ)/(cos 15^circ)` = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)