English

If 3 Cot θ = 4, Find the Value of 4 Cos θ − Sin θ 2 Cos θ + Sin θ - Mathematics

Advertisements
Advertisements

Question

If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]

Sum

Solution

We have: 

`3 cot θ=4` 

`cotθ= 4/3` 

Since we know that in right angle triangle 

`cot θ=" Base"/"Perpendicular"` 

`cot θ=" Base"/ "Hypotenuse"` 

`sinθ = "Prependicular"/ "Hypotenuse" `  

`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)` 

`"Hypotenuse"=sqrt((3)^2+(4)^2)` 

`"Hypotenuse"=sqrt25` 

`"Hypotenuse"=5` 

Now, we find `(4 cosθ- sin θ)/(2 cos θ+sin θ)` 

⇒ `(4 cosθ- sin θ)/(2 cos θ+sin θ)=(4xx 4/5-3/5)/(2xx4/5+3/5)` 

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) (16/5-3/5)/(8/5+3/5)`  

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ)=``(13/5)/(11/5)` 

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) = 13/11` 

Hence the value of  `(4 cosθ- sinθ)/(2 cos θ+sin θ) "is" 13/11` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.4 | Q 7 | Page 55

RELATED QUESTIONS

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Solve.
`tan47/cot43`


solve.
cos240° + cos250°


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Evaluate:

`sin80^circ/(cos10^circ) + sin59^circ  sec31^circ`


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Prove that:

sin (28° + A) = cos (62° – A)


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×