Advertisements
Advertisements
Question
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Solution
We have:
`3 cot θ=4`
`cotθ= 4/3`
Since we know that in right angle triangle
`cot θ=" Base"/"Perpendicular"`
`cot θ=" Base"/ "Hypotenuse"`
`sinθ = "Prependicular"/ "Hypotenuse" `
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt((3)^2+(4)^2)`
`"Hypotenuse"=sqrt25`
`"Hypotenuse"=5`
Now, we find `(4 cosθ- sin θ)/(2 cos θ+sin θ)`
⇒ `(4 cosθ- sin θ)/(2 cos θ+sin θ)=(4xx 4/5-3/5)/(2xx4/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) (16/5-3/5)/(8/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ)=``(13/5)/(11/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) = 13/11`
Hence the value of `(4 cosθ- sinθ)/(2 cos θ+sin θ) "is" 13/11`
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Solve.
`tan47/cot43`
solve.
cos240° + cos250°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Prove that:
sin (28° + A) = cos (62° – A)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
The value of the expression (cos2 23° – sin2 67°) is positive.