Advertisements
Advertisements
Question
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Solution
4 sin2 A – 3 = 0
`=> sin^2A = 3/4`
`=> sin A = sqrt(3)/2`
We know `sin 60^circ = sqrt(3)/2`
Hence, A = 60°
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
sin235° + sin255°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If the angle θ = –45° , find the value of tan θ.