English

Prove the Following Trigonometric Identities. (Cosecθ + Sinθ) (Cosecθ − Sinθ) = Cot2 θ + Cos2θ - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ

Solution

We have to prove  (cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ

We know that

`sin^2 theta + cos^2 theta = 1`

`cosec^2 theta - cot^2 theta = 1`

So,

`(cosec theta + sin theta)(cosec theta - sin theta) = cosec^2 theta -  sin^2 theta`

`= (1 + cot^2 theta) - (1 - cos^2 theta)`

`= 1 + cot^2 theta  - 1 + cos^2 theta`

`= cot^2 theta + cos^2 theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 15 | Page 44

RELATED QUESTIONS

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Solve.
`cos55/sin35+cot35/tan55`


Evaluate.
sin235° + sin255°


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°


Use tables to find sine of 62° 57'


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Evaluate: cos2 25° - sin2 65° - tan2 45°


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


The value of tan 72° tan 18° is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×