Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Solution
We have to prove (cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
We know that
`sin^2 theta + cos^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(cosec theta + sin theta)(cosec theta - sin theta) = cosec^2 theta - sin^2 theta`
`= (1 + cot^2 theta) - (1 - cos^2 theta)`
`= 1 + cot^2 theta - 1 + cos^2 theta`
`= cot^2 theta + cos^2 theta`
APPEARS IN
RELATED QUESTIONS
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`cos55/sin35+cot35/tan55`
Evaluate.
sin235° + sin255°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 62° 57'
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
The value of tan 72° tan 18° is