English

Prove the Following Trigonometric Identities. (1 - Sin Theta)/(1 + Sin Theta) = (Sec Theta - Tan Theta)^2 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`

Solution

We have to prove  `(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`

We know that, `sin^2 theta  + cos^2 theta = 1`

Multiplying both numerator and denominator by  `(1 - sin theta)` we have

`(1 - sin theta)/(1 + sin theta) = ((1 - sin theta)(1 -  sin theta))/((1 + sin theta)(1 - sin theta))`

`= (1 - sin theta)^2/(1 - sin^2 theta)`

`= ((1 - sin theta)/cos theta)^2`

`= (1/cos theta - sin theta/cos theta)^2`

`= (sec theta - tan theta)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 14 | Page 44

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×