Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Solution
We have to prove `(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and denominator by `(1 - sin theta)` we have
`(1 - sin theta)/(1 + sin theta) = ((1 - sin theta)(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (1 - sin theta)^2/(1 - sin^2 theta)`
`= ((1 - sin theta)/cos theta)^2`
`= (1/cos theta - sin theta/cos theta)^2`
`= (sec theta - tan theta)^2`
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1