English

Prove the following: (sin α + cos α)(tan α + cot α) = sec α + cosec α - Mathematics

Advertisements
Advertisements

Question

Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α

Sum

Solution

L.H.S = (sin α + cos α)(tan α + cot α)

= `(sin alpha + cos alpha)(sin alpha/cos alpha + cos alpha/sin alpha)`  ...`[∵ tan theta = sin theta/costheta  "and" cot theta = cos theta/sin theta]`

= `(sin alpha + cos alpha)((sin^2alpha + cos^2alpha)/(sin alpha * cos alpha))`

= `(sin alpha + cos alpha) * 1/((sin alpha * cos alpha))`  ...[∵ sin2θ + cos2θ = 1]

= `1/cosalpha + 1/sinalpha`  ...`[∵ sec theta = 1/costheta  "and"  "cosec"  theta = 1/sintheta]`

=  sec α + cosec α

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [Page 95]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 4 | Page 95

RELATED QUESTIONS

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


If `secθ = 25/7 ` then find tanθ.


What is the value of (1 − cos2 θ) cosec2 θ? 


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


If sin θ = `1/2`, then find the value of θ. 


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×