Advertisements
Advertisements
Question
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Solution
L.H.S = (sin α + cos α)(tan α + cot α)
= `(sin alpha + cos alpha)(sin alpha/cos alpha + cos alpha/sin alpha)` ...`[∵ tan theta = sin theta/costheta "and" cot theta = cos theta/sin theta]`
= `(sin alpha + cos alpha)((sin^2alpha + cos^2alpha)/(sin alpha * cos alpha))`
= `(sin alpha + cos alpha) * 1/((sin alpha * cos alpha))` ...[∵ sin2θ + cos2θ = 1]
= `1/cosalpha + 1/sinalpha` ...`[∵ sec theta = 1/costheta "and" "cosec" theta = 1/sintheta]`
= sec α + cosec α
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
If `secθ = 25/7 ` then find tanθ.
What is the value of (1 − cos2 θ) cosec2 θ?
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
If sin θ = `1/2`, then find the value of θ.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.