हिंदी

Prove the following: (sin α + cos α)(tan α + cot α) = sec α + cosec α - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α

योग

उत्तर

L.H.S = (sin α + cos α)(tan α + cot α)

= `(sin alpha + cos alpha)(sin alpha/cos alpha + cos alpha/sin alpha)`  ...`[∵ tan theta = sin theta/costheta  "and" cot theta = cos theta/sin theta]`

= `(sin alpha + cos alpha)((sin^2alpha + cos^2alpha)/(sin alpha * cos alpha))`

= `(sin alpha + cos alpha) * 1/((sin alpha * cos alpha))`  ...[∵ sin2θ + cos2θ = 1]

= `1/cosalpha + 1/sinalpha`  ...`[∵ sec theta = 1/costheta  "and"  "cosec"  theta = 1/sintheta]`

=  sec α + cosec α

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 4 | पृष्ठ ९५

संबंधित प्रश्न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


` tan^2 theta - 1/( cos^2 theta )=-1`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×