Advertisements
Advertisements
प्रश्न
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
उत्तर
L.H.S = (sin α + cos α)(tan α + cot α)
= `(sin alpha + cos alpha)(sin alpha/cos alpha + cos alpha/sin alpha)` ...`[∵ tan theta = sin theta/costheta "and" cot theta = cos theta/sin theta]`
= `(sin alpha + cos alpha)((sin^2alpha + cos^2alpha)/(sin alpha * cos alpha))`
= `(sin alpha + cos alpha) * 1/((sin alpha * cos alpha))` ...[∵ sin2θ + cos2θ = 1]
= `1/cosalpha + 1/sinalpha` ...`[∵ sec theta = 1/costheta "and" "cosec" theta = 1/sintheta]`
= sec α + cosec α
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
` tan^2 theta - 1/( cos^2 theta )=-1`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1