Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
उत्तर
We need to prove `((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Solving the L.H.S, we get
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = (sec^2 theta (cot theta))/(cosec^2 theta)`
Using `sec theta = 1/cos theta, cot theta = cos theta/sin theta`. `cosec theta = 1/sin theta` we get
`(sec^2 theta(cot theta))/(cosec^2 theta) = (1/cos^2 theta (cos theta/sin theta))/(1/sin^2 theta)`
`= (1/(cos theta sin theta))/(1/sin^2 theta)`
`= sin^2 theta/(cos theta sin theta)`
`= sin theta/cos theta`
`= tan theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
(secA + tanA) (1 − sinA) = ______.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
What is the value of (1 − cos2 θ) cosec2 θ?
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that:
tan (55° + x) = cot (35° – x)
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`