हिंदी

Prove the Following Trigonometric Identities. ((1 + Tan^2 Theta)Cot Theta)/((Cosec^2 Theta = Tan Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`

उत्तर

We need to prove `((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`

Solving the L.H.S, we get

`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = (sec^2 theta (cot theta))/(cosec^2 theta)`

Using `sec theta = 1/cos theta, cot theta = cos theta/sin theta`. `cosec theta = 1/sin theta` we get

`(sec^2 theta(cot theta))/(cosec^2 theta) = (1/cos^2 theta (cos theta/sin theta))/(1/sin^2 theta)`

`= (1/(cos theta sin theta))/(1/sin^2 theta)`

`= sin^2 theta/(cos theta sin theta)`

`= sin theta/cos theta`

`= tan theta`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 33 | पृष्ठ ४४

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


(secA + tanA) (1 − sinA) = ______.


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


What is the value of (1 − cos2 θ) cosec2 θ? 


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that:

tan (55° + x) = cot (35° – x)


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×