Advertisements
Advertisements
प्रश्न
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
उत्तर
`1/"a" = cos theta/(1 + sin theta)`
Squaring on both sides,
`1/"a"^2 = (cos^2theta)/(1 + sin theta)^2= (1 - sin^2theta)/(1 + sin theta)^2`
`1/"a"^2 = ((1 + sin theta)(1 - sin theta))/(1 + sin theta)^2 = ((1 - sin theta))/((1 + sin theta))`
a2(1 − sin θ) = 1 + sin θ
⇒ a2 = `((1 + sin theta))/((1 - sin theta))`
L.H.S = `("a"^2 - 1)/("a"^2 + 1)`
= `((1 + sin theta))/((1 - sin theta)) - 1 ÷ ((1 + sin theta))/((1 - sin theta)) + 1`
= `((1 + sin theta) - (1 - sin theta))/((1 - sin theta)) ÷ ((1 + sin theta) + (1 - sin theta))/((1 - sin theta))`
= `(1 + sin theta - 1 + sin theta)/((1 - sin theta)) ÷ (1 + sin theta + 1 - sin theta)/((1 - sin theta))`
= `(2 sin theta)/(1 - sin theta) ÷ 2/(1 - sin theta)`
= `(2 sin theta)/(1 - sin theta) xx (1 - sin theta)/2`
= sin θ
∴ `("a"^2 - 1)/("a"^2 + 1)` = sin θ.
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to