Advertisements
Advertisements
प्रश्न
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
उत्तर
Given: Sec θ = x + `1/(4"x"), x ≠ 0,`
Squaring both sides
sec2 θ = `("x" + 1/(4"x"))^2`
We know
tan2θ = sec2θ - 1
`=>"tan"^2theta = ("x" + 1/("4x"))^2 - 1`
`=> "tan"^2theta = ("x" + 1/"4x" - 1)("x" + 1/"4x" + 1)`
`=> "tan"^2theta = ("x" - 1/("4x"))^2`
`=> "tan" theta = +- ("x" -1/("4x"))`
When tan θ = x - `1/("4x")`
secθ + tan θ = x + `1/("4x") + "x" - 1/("4x")`
= 2x
When tan θ = - `("x" - 1/("4x")) = 1/("4x") - "x"`
sec θ + tan θ = x + `1/"4x" + 1/"4x" - "x"`
`=1/"2x"`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `secθ = 25/7 ` then find tanθ.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
If sin θ = `1/2`, then find the value of θ.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`