Advertisements
Advertisements
प्रश्न
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
उत्तर
Given: Sec θ = x + `1/(4"x"), x ≠ 0,`
Squaring both sides
sec2 θ = `("x" + 1/(4"x"))^2`
We know
tan2θ = sec2θ - 1
`=>"tan"^2theta = ("x" + 1/("4x"))^2 - 1`
`=> "tan"^2theta = ("x" + 1/"4x" - 1)("x" + 1/"4x" + 1)`
`=> "tan"^2theta = ("x" - 1/("4x"))^2`
`=> "tan" theta = +- ("x" -1/("4x"))`
When tan θ = x - `1/("4x")`
secθ + tan θ = x + `1/("4x") + "x" - 1/("4x")`
= 2x
When tan θ = - `("x" - 1/("4x")) = 1/("4x") - "x"`
sec θ + tan θ = x + `1/"4x" + 1/"4x" - "x"`
`=1/"2x"`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
`(sec^2 theta-1) cot ^2 theta=1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If x = a tan θ and y = b sec θ then
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ