मराठी

If Sec θ = X + 1/(4"X"), X ≠ 0, Find (Sec θ + Tan θ) - Mathematics

Advertisements
Advertisements

प्रश्न

If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)

बेरीज

उत्तर

Given: Sec θ = x + `1/(4"x"), x ≠ 0,`

Squaring both sides

secθ  = `("x" + 1/(4"x"))^2`

We know

tan2θ  = sec2θ - 1

`=>"tan"^2theta = ("x" + 1/("4x"))^2 - 1`

 `=> "tan"^2theta = ("x" + 1/"4x" - 1)("x" + 1/"4x" + 1)`

`=> "tan"^2theta = ("x" - 1/("4x"))^2`

`=> "tan" theta = +- ("x" -1/("4x"))`

When tan θ = x - `1/("4x")`

secθ + tan θ = x + `1/("4x") + "x" - 1/("4x")`

= 2x

When tan θ = - `("x" - 1/("4x")) = 1/("4x") - "x"`

sec θ + tan θ = x + `1/"4x" + 1/"4x" - "x"`

`=1/"2x"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/1/3

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


`(sec^2 theta-1) cot ^2 theta=1`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Write the value of cosec2 (90° − θ) − tan2 θ. 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


If x = a tan θ and y = b sec θ then


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×