Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
उत्तर
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
⇒ `sin(90^circ - 18^circ)/cos18^circ - sec(90^circ - 58^circ)/(cosec58^circ)`
⇒ `cos18^circ/cos18^circ - (cosec 58^circ)/(cosec58^circ) = 1 - 1 = 0`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.