Advertisements
Advertisements
Question
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Solution
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
⇒ `sin(90^circ - 18^circ)/cos18^circ - sec(90^circ - 58^circ)/(cosec58^circ)`
⇒ `cos18^circ/cos18^circ - (cosec 58^circ)/(cosec58^circ) = 1 - 1 = 0`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
(1 + sin A)(1 – sin A) is equal to ______.