Advertisements
Advertisements
Question
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Solution
we get :
`x^2 = (acosθ)^2 = a^2cos^2θ`
`y^2 = (bcotθ)^2 = b^2cot^2θ`
LHS = `a^2/x^2 - b^2/y^2 = a^2/(a^2cos^2θ) - b^2/(b^2 cot^2θ) = 1/(cos^2θ) - 1/cot^2θ`
⇒ LHS = `sec^2θ - tan^2θ = 1 ["Since" 1 + tan^2θ = sec^2θ]`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Choose the correct alternative:
1 + cot2θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
If tan θ = `x/y`, then cos θ is equal to ______.