English

If X = Acosθ , Y = Bcotθ , Prove that a 2 X 2 − B 2 Y 2 = 1 . - Mathematics

Advertisements
Advertisements

Question

If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`

Sum

Solution

we get : 

`x^2 = (acosθ)^2 = a^2cos^2θ`

`y^2 = (bcotθ)^2 = b^2cot^2θ`

LHS = `a^2/x^2 - b^2/y^2 = a^2/(a^2cos^2θ) - b^2/(b^2 cot^2θ) = 1/(cos^2θ) - 1/cot^2θ`

⇒ LHS = `sec^2θ - tan^2θ = 1  ["Since"    1 + tan^2θ = sec^2θ]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.2

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.2 | Q 5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×