Advertisements
Advertisements
Question
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Solution
LHS = `(sin^2θ)/(cosθ) + cosθ = secθ`
= `(sin^2θ + cos^2θ)/(cosθ)`
= `1/(cosθ)` ...(sin2θ + cos2θ = 1)
= secθ ...`(1/cosθ = secθ)`
R.H.S
LHS = RHS
Hence proved.
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If `secθ = 25/7 ` then find tanθ.
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Choose the correct alternative:
cos 45° = ?
If tan α + cot α = 2, then tan20α + cot20α = ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.
If cosA + cos2A = 1, then sin2A + sin4A = 1.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.