Advertisements
Advertisements
Question
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Solution
𝑊𝑒 ℎ𝑎𝑣𝑒,
Sin 𝜃 = cos(𝜃 − 45°)
⟹ cos(90° − 𝜃) = cos(𝜃 − 45°)
Comparing both sides, we get
` 90° - theta = theta - 45°`
` ⇒ theta + theta = 90° + a=45°`
`⇒ 2 theta = 135°`
`⇒ theta = ((135)/2)^°`
∴ 𝜃 = 67.5°
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.