Advertisements
Advertisements
Question
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Solution
L.H.S. = `sinA/(sin (90^circ - A)) + cosA/(cos(90^circ - A))`
= `sinA/cosA + cosA/sinA`
= `(sin^2A + cos^2A)/(cosAsinA)` ...(∵ sin2 A + cos2 A = 1)
= `1/(cosAsinA)`
= sec A cosec A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that sin4A – cos4A = 1 – 2cos2A
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ