Advertisements
Advertisements
प्रश्न
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
उत्तर
L.H.S. = `sinA/(sin (90^circ - A)) + cosA/(cos(90^circ - A))`
= `sinA/cosA + cosA/sinA`
= `(sin^2A + cos^2A)/(cosAsinA)` ...(∵ sin2 A + cos2 A = 1)
= `1/(cosAsinA)`
= sec A cosec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`