Advertisements
Advertisements
प्रश्न
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
उत्तर
L.H.S. = `sinA/(sin (90^circ - A)) + cosA/(cos(90^circ - A))`
= `sinA/cosA + cosA/sinA`
= `(sin^2A + cos^2A)/(cosAsinA)` ...(∵ sin2 A + cos2 A = 1)
= `1/(cosAsinA)`
= sec A cosec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove that:
`cosA/(1 + sinA) = secA - tanA`
(i)` (1-cos^2 theta )cosec^2theta = 1`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.