Advertisements
Advertisements
प्रश्न
(i)` (1-cos^2 theta )cosec^2theta = 1`
उत्तर
LHS= `(1-cos^2 theta) cosec^2 theta`
=`sin ^2 theta cosec^2 theta (∵ cos^2 theta + sin^2 theta =1)`
=`1/(cosec^2theta) ×cosec^2theta`
=1
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ