मराठी

(I)` (1-cos^2 Theta )Cosec^2theta = 1` - Mathematics

Advertisements
Advertisements

प्रश्न

(i)` (1-cos^2 theta )cosec^2theta = 1`

उत्तर

LHS= `(1-cos^2 theta) cosec^2 theta`

      =`sin ^2 theta cosec^2 theta           (∵ cos^2 theta + sin^2 theta =1)`

      =`1/(cosec^2theta) ×cosec^2theta`

     =1

Hence, LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 1.1

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×