Advertisements
Advertisements
प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
उत्तर
L.H.S = `sqrt((1-cosA)/(1+cos A))`
`= sqrt((1-cosA)/(1+cosA) xx (1 - cos A)/(1- cos A)) = sqrt((1- cosA)^2/(1-cos^2A))`
`=sqrt((1- cosA)^2/(sin^2A)) = (1-cosA)/sin A = 1/sin A - cos A/sin A = cosec A -cot A` = R.H.S
Hence prove.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Write the value of tan10° tan 20° tan 70° tan 80° .
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ