Advertisements
Advertisements
प्रश्न
Write the value of tan10° tan 20° tan 70° tan 80° .
उत्तर
𝑡𝑎𝑛10° 𝑡𝑎𝑛20° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= cot(90° − 10° ) cot(90° − 20° ) 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= 𝑐𝑜𝑡80° 𝑐𝑜𝑡70° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
=`1/ (tan 80°) xx1/ (tan 70° ) xx tan 70° xx tan 80° `
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
What is the value of (1 + cot2 θ) sin2 θ?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.