Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
उत्तर
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying numerator and denominator under the square root by `1 - cos theta)` we have
`sqrt((1 - cos theta)/(1 + cos theta)) = sqrt(((1 - cos theta)(1 - cos theta))/((1 + cos theta)(1 - cos theta)))`
`= sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 - cos theta)^2/sin^2 theta`
`= (1 - cos theta)/sin theta`
`= 1/sin theta - cos theta/sin theta`
`= cosec theta - cot theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If sin θ = `1/2`, then find the value of θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cos A + cos2A = 1, then sin2A + sin4 A = ?