मराठी

Prove the Following Trigonometric Identities. `Sqrt((1 - Cos Theta)/(1 + Cos Theta)) = Cosec Theta - Cot Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`

उत्तर

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying numerator and denominator under the square root by `1 - cos theta)` we have

`sqrt((1 - cos theta)/(1 + cos theta)) = sqrt(((1 - cos theta)(1 - cos theta))/((1 + cos theta)(1 - cos theta)))`

`= sqrt((1 - cos theta)^2/(1 - cos^2 theta))`

`= sqrt((1 - cos theta)^2/sin^2 theta`

`= (1 - cos theta)/sin theta`

`= 1/sin theta - cos theta/sin theta`

`= cosec theta - cot theta`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 11 | पृष्ठ ४३

संबंधित प्रश्‍न

Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


If sin θ = `1/2`, then find the value of θ. 


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×