Advertisements
Advertisements
प्रश्न
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
उत्तर
1 + tan2 θ = sec2 θ
∴ 1 + (2)2 = sec2 θ
∴ sec2 θ = 1 + 4
= 5
sec θ = `sqrt(5)`
cos θ = `1/(sec theta)`
∴ cos θ = `1/sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Choose the correct alternative:
sec 60° = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1