Advertisements
Advertisements
प्रश्न
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
उत्तर
`cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = cos^2 (90^circ - 60^circ) - cos^2 60^circ`
⇒ `cos(2x - 6) = sin^2 60^circ - cos^2 60^circ`
⇒ `cos(2x - 6) = 1 - 2cos^2 60^circ = 1 - 2(1/2)^2 = 1 - 1/2 = 1/2`
⇒ `cos(2x - 6) = 1/2`
⇒ `cos(2x - 6) = cos60^circ`
⇒ `(2x - 6) = 60^circ`
⇒ `2x = 66^circ`
⇒ `x = 33^circ`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
`sin^2 theta + 1/((1+tan^2 theta))=1`
` tan^2 theta - 1/( cos^2 theta )=-1`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.