Advertisements
Advertisements
प्रश्न
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
पर्याय
–1
1
0
2
उत्तर
(sec2 θ – 1) (cosec2 θ – 1) is equal to 1.
Explanation:
(sec2 θ – 1) (cosec2 θ – 1) = tan2 θ.cot2 θ ...`[(∵ sec^2 θ - 1 = tan^2 θ),("cosec"^2 θ - 1 = cot^2 θ)]`
= `tan^2 θ . 1/tan^2 θ`
= 1
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`(sec^2 theta-1) cot ^2 theta=1`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Choose the correct alternative:
sec2θ – tan2θ =?
(sec θ + tan θ) . (sec θ – tan θ) = ?
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.