मराठी

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

बेरीज

उत्तर

Given: sin θ + 2 cos θ = 1

Squaring on both sides,

(sin θ + 2 cos θ)2 = 1

⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1

Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ

⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1

⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1

⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4

⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4

We know that,

a2 + b2 – 2ab = (a – b)2

So, we get,

(2sin θ – cos θ)2 = 4

⇒ 2sin θ – cos θ = 2

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 5 | पृष्ठ ९९

संबंधित प्रश्‍न

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(sec^2 theta-1) cot ^2 theta=1`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


What is the value of (1 + cot2 θ) sin2 θ?


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Choose the correct alternative:

sec 60° = ?


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×