Advertisements
Advertisements
प्रश्न
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
उत्तर
Given: sin θ + 2 cos θ = 1
Squaring on both sides,
(sin θ + 2 cos θ)2 = 1
⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1
Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ
⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1
⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1
⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4
⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4
We know that,
a2 + b2 – 2ab = (a – b)2
So, we get,
(2sin θ – cos θ)2 = 4
⇒ 2sin θ – cos θ = 2
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(sec^2 theta-1) cot ^2 theta=1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
sec 60° = ?
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1