Advertisements
Advertisements
प्रश्न
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
उत्तर
To Prove: `((1 + tan^2 A))/((1 + cot^2 A))` = sec2 A – 1
LHS.
We have, `(((1 + sin^2 A)/(cos^2 A)))/(((1 + cos^2 A)/(sin^2 A)))`
= `[(((cos^2 A + sin^2 A))/(cos^2 A))/(((sin^2 A + cos^2 A))/(sin^2 A))]`
= `((1/cos^2 A))/((1/sin^2 A))` ...[As sin2 A + cos2 A = 1]
= `((sin^2 A))/((cos^2 A))`
= tan2 A
= sec2 A – 1
Hence, proved.
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
sec4 A − sec2 A is equal to
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Find A if tan 2A = cot (A-24°).
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?