Advertisements
Advertisements
प्रश्न
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
उत्तर
L.H.S. = `cos^2theta*(1 + tan^2theta)`
= `cos^2theta xx sec^2theta` .....`[1 + tan^2theta = sec^2theta]`
= `(cos theta xx sectheta)^2`
= 12
= 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ