Advertisements
Advertisements
प्रश्न
`(sin 75^circ)/(cos 15^circ)` = ?
उत्तर
`(sin 75^circ)/(cos 15^circ)` = `(sin(90^circ - 15^circ))/(cos 15^circ)`
= `(cos 15^circ)/(cos 15^circ)` .....[∵ sin(90° – θ) = cos θ]
= 1
APPEARS IN
संबंधित प्रश्न
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 21°
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin 3A = cos 6A, then ∠A = ?
The value of the expression (cos2 23° – sin2 67°) is positive.