मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Sin75∘cos15∘ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

`(sin 75^circ)/(cos 15^circ)` = ?

बेरीज

उत्तर

`(sin 75^circ)/(cos 15^circ)` = `(sin(90^circ - 15^circ))/(cos 15^circ)`

= `(cos 15^circ)/(cos 15^circ)`    .....[∵ sin(90° – θ) = cos θ]

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.1 (B)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use tables to find sine of 21°


Use tables to find cosine of 26° 32’


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


If sin 3A = cos 6A, then ∠A = ?


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×