Advertisements
Advertisements
प्रश्न
If sin 3A = cos 6A, then ∠A = ?
उत्तर
sin 3A = cos 6A .....[Given]
∴ sin 3A = sin(90° – 6A) .....[∵ cos θ = sin(90° – θ)]
∴ 3A = 90° – 6A
∴ 3A + 6A = 90°
∴ 9A = 90°
∴ A = `(90^circ)/9`
∴ A = 10°
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`sec75/(cosec15)`
solve.
cos240° + cos250°
Evaluate.
sin235° + sin255°
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
The value of cos2 17° − sin2 73° is
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)