Advertisements
Advertisements
प्रश्न
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
उत्तर
`3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`
= `3(sin(90° - 18°))/(cos 18°) - sec(90° - 58°)/("cosec"58°)`
= `3(cos 18°)/(cos 18°) - ("cosec"58°)/("cosec"58°)`
= 3 - 1
= 2
APPEARS IN
संबंधित प्रश्न
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`cos55/sin35+cot35/tan55`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 47° 32'
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If A and B are complementary angles, then
If tan θ = 1, then sin θ . cos θ = ?
The value of the expression (cos2 23° – sin2 67°) is positive.