Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, then
पर्याय
sin A = sin B
cos A = cos B
tan A = tan B
sec A = cosec B
उत्तर
Given: A and are B are complementary angles
Since `sec (90°-B)= cosec B`
therefore `A+B=90°`
⇒ `A=90°-B`
⇒ `sec (90°-B)`
⇒ `secA= cosec B`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find cosine of 26° 32’
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 8 tan x = 15, then sin x − cos x is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Sin 2B = 2 sin B is true when B is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.