Advertisements
Advertisements
Question
If A and B are complementary angles, then
Options
sin A = sin B
cos A = cos B
tan A = tan B
sec A = cosec B
Solution
Given: A and are B are complementary angles
Since `sec (90°-B)= cosec B`
therefore `A+B=90°`
⇒ `A=90°-B`
⇒ `sec (90°-B)`
⇒ `secA= cosec B`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Use tables to find sine of 47° 32'
Use tables to find cosine of 65° 41’
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
If 3 cos θ = 5 sin θ, then the value of
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: cos2 25° - sin2 65° - tan2 45°
Find the value of the following:
sin 21° 21′
If cot( 90 – A ) = 1, then ∠A = ?
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.