English

If X C O S E C 2 30 ° Sec 2 45 ° 8 Cos 2 45 ° Sin 2 60 ° = Tan 2 60 ° − Tan 2 30 ° - Mathematics

Advertisements
Advertisements

Question

If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 

Options

  •  1

  •  −1

  •  2

  • 0

MCQ

Solution

We have: ` (xcosec^2 30° sec^2 45°)/ (8 cos^2 45° sin^2 60°)= tan ^2 60°-tan ^2 30°`

Here we have to find the value of x 

As we know that  `cos 45°=1/sqrt2 , sec 45°=sqrt2 , tan 30°=1sqrt3, tan 60°=sqrt3 , cos 30°=sqrt3/2, cose c 30°=2` 

So 

⇒`( x cosec^2 30° sec ^2 45°)/(8 cos^2 45° sin ^2 60)` 

⇒`( x xx4xx2)/(8xx1/2xx3/4)=3-1/3`

⇒ `(8x)/3=8/3`  

⇒ `x=1` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 13 | Page 57

RELATED QUESTIONS

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find cosine of 8° 12’


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Prove that:

sin (28° + A) = cos (62° – A)


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


If the angle θ = –45° , find the value of tan θ.


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


In the following figure  the value of cos ϕ is 


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Find the value of the following:

sin 21° 21′


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×