Advertisements
Advertisements
Question
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
Options
1
−1
2
0
Solution
We have: ` (xcosec^2 30° sec^2 45°)/ (8 cos^2 45° sin^2 60°)= tan ^2 60°-tan ^2 30°`
Here we have to find the value of x
As we know that `cos 45°=1/sqrt2 , sec 45°=sqrt2 , tan 30°=1sqrt3, tan 60°=sqrt3 , cos 30°=sqrt3/2, cose c 30°=2`
So
⇒`( x cosec^2 30° sec ^2 45°)/(8 cos^2 45° sin ^2 60)`
⇒`( x xx4xx2)/(8xx1/2xx3/4)=3-1/3`
⇒ `(8x)/3=8/3`
⇒ `x=1`
APPEARS IN
RELATED QUESTIONS
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Prove that:
sin (28° + A) = cos (62° – A)
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If the angle θ = –45° , find the value of tan θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
In the following figure the value of cos ϕ is
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Find the value of the following:
sin 21° 21′
The value of the expression (cos2 23° – sin2 67°) is positive.