Advertisements
Advertisements
Question
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Solution
`sinA/(secA - 1) + sinA/(secA + 1) = 2`
`=> (sinAsecA + sinA + secAsinA - sinA)/((secA - 1)(secA + 1)) = 2`
`=> (2sinAsecA)/(sec^2A - 1) = 2`
`=> (sinAsecA)/tan^2A = 1`
`=> cosA/sinA = 1`
`=>` cot A = 1
We know cot 45° = 1
Hence, A = 45°
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Evaluate.
sin235° + sin255°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 10° tan 15° tan 75° tan 80° is