Advertisements
Advertisements
Question
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Solution
sin 3x = 2 sin 30° cos 30°
sin 3x = `2(1/2)(sqrt3/2)`
sin 3x = `sqrt3/2 = sin60^circ`
3x = 60°
Hence, x = 20°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Prove that:
sin (28° + A) = cos (62° – A)
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
`tan 47^circ/cot 43^circ` = 1