Advertisements
Advertisements
Question
What is the maximum value of \[\frac{1}{\sec \theta}\]
Solution
The maximum value of `1/cosθ` is 1 because the maximum value of sinθ is 1 that is
`1/(cosec θ)=sin θ`
`1/(cosec θ)=1`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
Evaluate `(sin 18^@)/(cos 72^@)`
Solve.
`sec75/(cosec15)`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Sin 2A = 2 sin A is true when A =
In the following figure the value of cos ϕ is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
The value of (tan1° tan2° tan3° ... tan89°) is ______.