Advertisements
Advertisements
Question
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Solution
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
`2 tan(90^circ - 33^circ)/(cot33^circ) - cot(90^circ - 20^circ)/(tan20^circ) - sqrt(2)(1/sqrt2)`
`2 cot33^circ/(cot33^circ) - tan20^circ/(tan20^circ) - 1`
= 2 – 1 – 1
= 0
APPEARS IN
RELATED QUESTIONS
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate.
sin235° + sin255°
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find cosine of 26° 32’
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If tan θ = cot 37°, then the value of θ is