Advertisements
Advertisements
Question
Evaluate:
cosec (65° + A) – sec (25° – A)
Solution
cosec (65° + A) – sec (25° – A)
= cosec [90° – (25° – A)] – sec (25° – A)
= sec (25° – A) – sec (25° – A)
= 0
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Evaluate cosec 31° − sec 59°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
tan (55° - A) - cot (35° + A)
Write the maximum and minimum values of sin θ.
Write the maximum and minimum values of cos θ.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of tan 10° tan 15° tan 75° tan 80° is