Advertisements
Advertisements
Question
Prove that:
tan (55° - A) - cot (35° + A)
Sum
Solution
tan (55° - A) - cot (35° + A)
= tan [90° - (55° - A)] - cot (35° + A)
= cot (90° - 55° + A) - cot (35° + A)
= cot (35° + A) - cot (35° + A)
= 0
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate `(tan 26^@)/(cot 64^@)`
Solve.
`sec75/(cosec15)`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find sine of 21°
Prove that:
sec (70° – θ) = cosec (20° + θ)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
The value of tan 1° tan 2° tan 3°…. tan 89° is
If cot( 90 – A ) = 1, then ∠A = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.