Advertisements
Advertisements
Question
Prove that:
sec (70° – θ) = cosec (20° + θ)
Solution
sec (70° – θ) = sec [90° – (20° + θ)] = cosec (20° + θ)
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find sine of 10° 20' + 20° 45'
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Solve: 2cos2θ + sin θ - 2 = 0.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.