Advertisements
Advertisements
Question
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Solution
We know that for a triangle ΔABC
∠A + ∠B + ∠C = 180°
∠B + ∠C = 180° – ∠A
`=> (angle B + angle C)/2 = 90^circ - (angle A)/2`
`=> tan ((B + C)/2) = tan (90^circ - A/2)`
= `cot (A/2)`
APPEARS IN
RELATED QUESTIONS
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 2x = 2 sin 45° cos 45°
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]