Advertisements
Advertisements
Question
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Solution
sin 2x = 2 sin 45° cos 45°
sin 2x = `2(1/sqrt2)(1/sqrt2)`
sin 2x = 1 = sin 90°
2x = 90°
Hence, x = 45°
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Solve: 2cos2θ + sin θ - 2 = 0.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin 3A = cos 6A, then ∠A = ?