Advertisements
Advertisements
Question
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Options
cos 60°
sin 60°
tan 60°
sin 30°
Solution
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to tan 60°.
Explanation:
`(2 tan 30°)/(1-tan^2 30°)`
As, tan 30° = `1/sqrt3`
By substituting the value we get,
`= (2 xx 1/sqrt3)/(1-(1/sqrt3)^2)`
`= (2/sqrt3)/((3 - 1)/(3))`
`= 3/sqrt3`
`= (3sqrt3)/3`
`= sqrt3`
And, `sqrt3` = tan 60°.
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
solve.
sec2 18° - cot2 72°
Use tables to find sine of 34° 42'
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Write the maximum and minimum values of sin θ.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Find the value of the following:
sin 21° 21′
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.