Advertisements
Advertisements
Question
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Solution
We have,
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[ \Rightarrow \tan\theta = \sqrt{\sec^2 \theta - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\left( \frac{13}{12} \right)^2 - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\frac{169}{144} - 1}\]
\[\Rightarrow \tan\theta = \sqrt{\frac{169 - 144}{144}} = \sqrt{\frac{25}{144}}\]\[ \Rightarrow \tan\theta = \frac{5}{12}\]
\[ \therefore \cot\theta = \frac{1}{\tan\theta} = \frac{1}{\frac{5}{12}} = \frac{12}{5}\]
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \sin\theta = \tan\theta \times \cos\theta\]
\[ \Rightarrow \sin\theta = \frac{5}{12} \times \frac{12}{13} = \frac{5}{13}\]
\[ \therefore cosec\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5}\]
RELATED QUESTIONS
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
solve.
cos240° + cos250°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
sin (28° + A) = cos (62° – A)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If the angle θ = –45° , find the value of tan θ.
Write the maximum and minimum values of sin θ.
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If 3 cos θ = 5 sin θ, then the value of
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
sin 21° 21′
If tan θ = cot 37°, then the value of θ is
If sin 3A = cos 6A, then ∠A = ?
If sec A + tan A = x, then sec A = ______.