Advertisements
Advertisements
प्रश्न
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
उत्तर
We have,
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[ \Rightarrow \tan\theta = \sqrt{\sec^2 \theta - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\left( \frac{13}{12} \right)^2 - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\frac{169}{144} - 1}\]
\[\Rightarrow \tan\theta = \sqrt{\frac{169 - 144}{144}} = \sqrt{\frac{25}{144}}\]\[ \Rightarrow \tan\theta = \frac{5}{12}\]
\[ \therefore \cot\theta = \frac{1}{\tan\theta} = \frac{1}{\frac{5}{12}} = \frac{12}{5}\]
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \sin\theta = \tan\theta \times \cos\theta\]
\[ \Rightarrow \sin\theta = \frac{5}{12} \times \frac{12}{13} = \frac{5}{13}\]
\[ \therefore cosec\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5}\]
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
sin15° cos75° + cos15° sin75°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find sine of 62° 57'
Use tables to find cosine of 2° 4’
Prove that:
sec (70° – θ) = cosec (20° + θ)
Write the value of tan 10° tan 15° tan 75° tan 80°?
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
The value of tan 72° tan 18° is
The value of tan 1° tan 2° tan 3°…. tan 89° is