Advertisements
Advertisements
प्रश्न
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
उत्तर
`Given `cot theta = sqrt3`
We have to find the value of the expression `(cosec^2 theta = cot^2 theta)/(cosec^2 theta - sec^2 theta)`
We know that
`cot theta = sqrt3 => cot^2 theta = 3`
`cosec^2 theta =1 + cot^2 theta = 1 + (sqrt3)^2 = 4`
`sec^2 theta = 1/cos^2 theta = 1/(1 - sin^2 theta) = 1/(1 - 1/cosec^2 theta) = 1/(1 - 1/4) = 4/3`
Therefore
`(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta) = (4 + 3)/(4 - 4/3)`
`= 21/8`
Hence, the value of the given expression is 21/8
APPEARS IN
संबंधित प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`sec75/(cosec15)`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 62° 57'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)