Advertisements
Advertisements
प्रश्न
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
उत्तर
We know that for a triangle ABC,
∠A + ∠B + ∠C = 180°
∠B + ∠C = 180° − ∠A
`(angle "B" +angle "C")/2 = 90° - (angle"A")/2`
`((sin "B+C")/2) = sin (90°- "A"/2)`
= cos `("A"/2)`
APPEARS IN
संबंधित प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
sin235° + sin255°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Prove that:
sec (70° – θ) = cosec (20° + θ)
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of tan 1° tan 2° tan 3°…. tan 89° is
If sin 3A = cos 6A, then ∠A = ?
The value of the expression (cos2 23° – sin2 67°) is positive.